Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Wellcome Open Res ; 7: 133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37521535

RESUMO

In living cells, the genetic information stored in the DNA sequence is always associated with chromosomal and extra-chromosomal epigenetic information. Chromatin is formed by the DNA and associated proteins, in particular histones. Covalent histone modifications are important bearers of epigenetic information and as such have been increasingly studied since about the year 2000. One of the principal techniques to gather information about the association between DNA and modified histones is chromatin immunoprecipitation (ChIP), also combined with massive sequencing (ChIP-Seq). Automated ChIPmentation procedure is a convenient alternative to native chromatin immunoprecipitation (N-ChIP). It is now routinely used for ChIP-Seq in many model species, using in general roughly 10 6 cells per experiment. Such high cell numbers are sometimes difficult to produce. Using the human parasite Schistosoma mansoni, whose production requires sacrificing animals and should therefore be kept to a minimum, we show here that automated ChIPmentation is suitable for limited biological material. We define the operational limit as ≥20,000 Schistosoma cells. We also present a streamlined protocol for the preparation of ChIP input libraries.

2.
PLoS Negl Trop Dis ; 15(12): e0010062, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941866

RESUMO

Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.


Assuntos
Genoma Helmíntico , Hibridização Genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Tamanho Corporal , Bulinus/parasitologia , Quimera/anatomia & histologia , Quimera/genética , Quimera/crescimento & desenvolvimento , Vetores de Doenças , Europa (Continente) , Feminino , Humanos , Masculino , Schistosoma/anatomia & histologia , Schistosoma haematobium/anatomia & histologia , Esquistossomose/parasitologia , Caramujos/parasitologia
3.
Front Cell Dev Biol ; 9: 765690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938734

RESUMO

In model organisms, epigenome dynamics underlies a plethora of biological processes. The role of epigenetic modifications in development and parasitism in nematode pests remains unknown. The root-knot nematode Meloidogyne incognita adapts rapidly to unfavorable conditions, despite its asexual reproduction. However, the mechanisms underlying this remarkable plasticity and their potential impact on gene expression remain unknown. This study provides the first insight into contribution of epigenetic mechanisms to this plasticity, by studying histone modifications in M. incognita. The distribution of five histone modifications revealed the existence of strong epigenetic signatures, similar to those found in the model nematode Caenorhabditis elegans. We investigated their impact on chromatin structure and their distribution relative to transposable elements (TE) loci. We assessed the influence of the chromatin landscape on gene expression at two developmental stages: eggs, and pre-parasitic juveniles. H3K4me3 histone modification was strongly correlated with high levels of expression for protein-coding genes implicated in stage-specific processes during M. incognita development. We provided new insights in the dynamic regulation of parasitism genes kept under histone modifications silencing. In this pioneering study, we establish a comprehensive framework for the importance of epigenetic mechanisms in the regulation of the genome expression and its stability in plant-parasitic nematodes.

4.
Antibiotics (Basel) ; 10(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073295

RESUMO

Chemical composition and herbicidal, antifungal, antibacterial and molluscicidal activities of essential oils from Choukzerk, Eryngium triquetrum, and Alexander, Smyrnium olusatrum, from western Algeria were characterized. Capillary GC-FID and GC/MS were used to investigate chemical composition of both essential oils, and the antifungal, antibacterial, molluscicidal and herbicidal activities were determined by % inhibition. Collective essential oil of E. triquetrum was dominated by falcarinol (74.8%) and octane (5.6%). The collective essential oil of S. olusatrum was dominated by furanoeremophilone (31.5%), furanodiene+curzurene (19.3%) and (E)-ß-caryophyllene (11%). The E. triquetrum oil was tested and a pure falcarinol (99%) showed virtuous herbicidal and antibacterial activities against potato blackleg disease, Pectobacterium atrosepticum, and Gram-negative soil bacterium, Pseudomonas cichorii (85 and 100% inhibition, respectively), and high ecotoxic activity against brine shrimp, Artemia salina, and the freshwater snail, Biomphalaria glabrata, with an IC50 of 0.35 µg/mL and 0.61 µg/mL, respectively. Essential oil of S. olusatrum showed interesting antibacterial and ecotoxic activity and good herbicidal activity against watercress seeds, Lepidium sativum (74% inhibition of photosynthesis, 80% mortality on growth test on model watercress), while the furanoeremophilone isolated from the oil (99% pure) showed moderate herbicidal activity. Both oils showed excellent antifungal activity against Fusarium. Both oils and especially falcarinol demonstrated good potential as new biocontrol agents in organic crop protection.

5.
Parasit Vectors ; 13(1): 486, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967724

RESUMO

BACKGROUND: Freshwater snails are the intermediate hosts of a large variety of trematode flukes such as Schistosoma mansoni responsible for one of the most important parasitic diseases caused by helminths, affecting 67 million people worldwide. Recently, the WHO Global Vector Control Response 2017-2030 (GVCR) programme reinforced its message for safer molluscicides as part of required strategies to strengthen vector control worldwide. Here, we present the essential oil from Eryngium triquetrum as a powerful product with molluscicide and parasiticide effect against S. mansoni and the snail intermediate host Biomphalaria glabrata. METHODS: In the present study, we describe using several experimental approaches, the chemical composition of E. triquetrum essential oil extract and its biological effects against the snail B. glabrata and its parasite S. mansoni. Vector and the free-swimming larval stages of the parasite were exposed to different oil concentrations to determine the lethal concentration required to produce a mortality of 50% (LC50) and 90% (LC90). In addition, toxic activity of this essential oil was analyzed against embryos of B. glabrata snails by monitoring egg hatching and snail development. Also, short-time exposure to sublethal molluscicide concentrations on S. mansoni miracidia was performed to test a potential effect on parasite infectivity on snails. Mortality of miracidia and cercariae of S. mansoni is complete for 5, 1 and 0.5 ppm of oil extract after 1 and 4 h exposure. RESULTS: The major chemical component found in E. triquetrum oil determined by GC-FID and GC/MS analyses is an aliphatic polyacetylene molecule, the falcarinol with 86.9-93.1% of the total composition. The LC50 and LC90 values for uninfected snails were 0.61 and 1.02 ppm respectively for 24 h exposure. At 0.5 ppm, the essential oil was two times more toxic to parasitized snails with a mortality rate of 88.8 ± 4.8%. Moderate embryonic lethal effects were observed at the concentration of 1 ppm. Severe surface damage in miracidia was observed with a general loss of cilia that probably cause their immobility. Miracidia exposed 30 min to low concentration of plant extract (0.1 ppm) were less infective with 3.3% of prevalence compare to untreated with a prevalence of 44%. CONCLUSIONS: Essential oil extracted from E. triquetrum and falcarinol must be considered as a promising product for the development of new interventions for schistosomiasis control and could proceed to be tested on Phase II according to the WHO requirements.


Assuntos
Anti-Helmínticos/farmacologia , Biomphalaria/efeitos dos fármacos , Eryngium/química , Moluscocidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Biomphalaria/parasitologia , Vetores de Doenças , Humanos , Dose Letal Mediana , Extratos Vegetais/farmacologia , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomose mansoni/parasitologia
6.
Methods Mol Biol ; 2151: C1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970301

RESUMO

Correction to: Chapter 9 in: David J. Timson (ed.), Schistosoma mansoni: Methods and Protocols, Methods in Molecular Biology, vol. 2151.

7.
Methods Mol Biol ; 2151: 93-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451999

RESUMO

DNA-binding proteins play critical roles in many major processes such as development and sexual biology of Schistosoma mansoni and are important for the pathogenesis of schistosomiasis. Chromatin immunoprecipitation (ChIP) experiments followed by sequencing (ChIP-seq) are useful to characterize the association of genomic regions with posttranslational chemical modifications of histone proteins. Challenges in the standard ChIP protocol have motivated recent enhancements in this approach, such as reducing the number of cells required and increasing the resolution. In this chapter, we describe the latest advances made by our group in the ChIP methods to improve the standard ChIP protocol to reduce the number of input cells required and to increase the resolution and robustness of ChIP in S. mansoni.


Assuntos
Histonas/metabolismo , Parasitos/metabolismo , Processamento de Proteína Pós-Traducional , Schistosoma mansoni/metabolismo , Animais , Anticorpos Anti-Helmínticos/metabolismo , Fracionamento Celular , Precipitação Química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA/isolamento & purificação , Humanos , Sefarose , Proteína Estafilocócica A
8.
Vet Sci ; 5(4)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404145

RESUMO

Worldwide schistosomiasis remains a serious public health problem with approximately 67 million people infected and 200 million at risk of infection from inhabiting or transiting endemically active regions. Africa, South America, the Caribbean, and the Middle East are the main transmission regions of Schistosoma mansoni. The fight against transmission through the use of molluscicides is not recent and has been advocated as the only activity with the possibility of interruption of transmission in small, epidemiologically active outbreaks. Euphorbia milii var. hislopii (syn. splendens) (Des Moulins, 1826) is the most promising for use in official schistosomiasis control programs according to the WHO. In this review, we show that an understanding of some how E. milii latex affects the snail vector and their parasites from a molecular level to field conditions is lacking. On the other hand, this type of treatment could also provide a rationale for the control of schistosomiasis and other parasitosis. Several publications contribute to enforcing the use of E. milii latex in endemic countries as a cheap alternative or complement to mass drug treatment with praziquantel, the only available drug to cure the patients (without preventing re-infection).

9.
Wellcome Open Res ; 3: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487916

RESUMO

Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...